The Learning Curve for Magnetic Resonance Imaging/Ultrasound Fusion-guided Prostate Biopsy.

TitleThe Learning Curve for Magnetic Resonance Imaging/Ultrasound Fusion-guided Prostate Biopsy.
Publication TypeJournal Article
Year of Publication2019
AuthorsKasabwala K, Patel N, Cricco-Lizza E, Shimpi AA, Weng S, Buchmann RM, Motanagh S, Wu Y, Banerjee S, Khani F, Margolis DJ, Robinson BD, Hu JC
JournalEur Urol Oncol
Volume2
Issue2
Pagination135-140
Date Published2019 Mar
ISSN2588-9311
Abstract

BACKGROUND: Magnetic resonance imaging/ultrasound-guided fusion biopsy (FBx) is more accurate at detecting clinically significant prostate cancer than conventional transrectal ultrasound-guided systematic biopsy. However, learning curves for attaining accuracy may limit the generalizability of published outcomes.

OBJECTIVE: To delineate and quantify the learning curve for FBx by assessing the targeted biopsy accuracy and pathological quality of systematic biopsy over time.

DESIGN, SETTING, AND PARTICIPANTS: We carried out a retrospective analysis of 173 consecutive men who underwent Artemis FBx with computer-template systematic sampling between July 2015 and May 2017.

OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The accuracy of targeted biopsy was determined by calculating the distance between planned and actual core trajectories stored on Artemis. Systematic sampling proficiency was assessed via pathological analysis of fibromuscular tissue in all cores and then comparing pathology elements from individual cores from men in the first and last tertiles. Polynomial linear regression models, change-point analysis, and piecewise linear regression were used to quantify the learning curve.

RESULTS AND LIMITATION: A significant improvement in targeted biopsy accuracy occurred up to 98 cases (p<0.01). There was a significant decrease in fibromuscular tissue in the systematic biopsy cores up to 84 cases (p<0.01) and an improvement in pathological quality when comparing systematic cores from the first and third tertiles. Use of a different fusion platform may limit the generalizability of our results.

CONCLUSIONS: There is a significant learning curve for targeted and systemic biopsy using the Artemis platform. Improvements in accuracy of targeted biopsy and better sampling for systematic biopsy can be achieved with greater experience.

PATIENT SUMMARY: We define the learning curve for magnetic resonance imaging/ultrasound-guided fusion biopsy (FBx) using targeted biopsy accuracy and systematic core sampling quality as measures. Our findings underscore the importance of overcoming learning curves inherent to FBx to minimize patient discomfort and biopsy risk and improve the quality of care for accurate risk stratification, active surveillance, and treatment selection.

DOI10.1016/j.euo.2018.07.005
Alternate JournalEur Urol Oncol
PubMed ID31017088
Division: 
Biostatistics
Category: 
Faculty Publication